Hydrophobic interactions of peptides with membrane interfaces.
نویسندگان
چکیده
The thermodynamic principles underlying the structural stability of membrane proteins are difficult to obtain directly from whole proteins because of intractable problems related to insolubility in the aqueous phase and extreme stability in the membrane phase. The principles must therefore be surmised from studies of the interactions of small peptides with lipid bilayers. This review is concerned with the hydrophobic interactions of such peptides with the interfacial regions of lipid bilayers. We first develop a general framework for thinking about the thermodynamics of membrane protein stability that centers on interfacial interactions and review the structural and chemical evidence that supports this interface-centered point of view. We then describe an experimentally determined whole-residue interfacial hydrophobicity scale that reveals the central role of the peptide bond in partitioning and folding. Finally, we consider the complexity and diversity of interfacial interactions revealed by differences between side-chain hydrophobicities determined using different classes of peptides.
منابع مشابه
Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity.
There are many peptides known that inhibit the entry of enveloped viruses into cells, including one peptide that is successfully being used in the clinic as a drug. In this review, we discuss the discovery, antiviral activity and mechanism of action of such peptides. While peptide entry inhibitors have been discovered by a wide variety of approaches (structure-based, accidental, intentional, ra...
متن کاملHydrogen-bond energetics drive helix formation in membrane interfaces.
The free energy cost ΔG of partitioning many unfolded peptides into membrane interfaces is unfavorable due to the cost of partitioning backbone peptide bonds. The partitioning cost is dramatically reduced if the peptide bonds participate in hydrogen bonds. The reduced cost underlies secondary structure formation by amphiphilic peptides partitioned into membrane interfaces through a process refe...
متن کاملInterfacial folding and membrane insertion of a designed helical peptide.
Nonconstitutive membrane-active proteins, such as diphtheria toxin, must refold on membrane interfaces in the course of membrane penetration. A useful step in deciphering this process is to understand quantitatively the energetics of interface-mediated insertion of model transmembrane helices. A difficulty is that peptides that are sufficiently hydrophobic to span a lipid bilayer have a strong ...
متن کاملCorrection: Deconstructing the DGAT1 Enzyme: Membrane Interactions at Substrate Binding Sites
Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst...
متن کاملBiological Membrane Interfaces Involved in Diseases: a Biophysical Study
Interactions between peptides and biological lipid membranes play a crucial role in many cellular processes such as in the mechanism behind Alzheimer’s disease where amyloid-β peptide (Aβ) is thought to be a key component. The initial step of binding between a surface active peptide and its target membrane or membrane receptor can involve a non specific electrostatic association where positivel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1376 3 شماره
صفحات -
تاریخ انتشار 1998